NASA spacecraft provides new information about sun's atmosphere

http://go.ad2upapp.com/afu.php?id=671508


NASA spacecraft provides new information about sun's atmosphere

NASA spacecraft provides new information about sun's atmosphere 

NASA spacecraft provides new information about sun's atmosphere




NASA's Interface Region Imaging Spectrograph (IRIS) has provided scientists with five new findings into how the sun's atmosphere, or corona, is heated far hotter than its surface, what causes the sun's constant outflow of particles called the solar wind, and what mechanisms accelerate particles that power solar flares.
The new information will help researchers better understand how our nearest star transfers energy through its atmosphere and track the dynamic solar activity that can impact technological infrastructure in space and on Earth. Details of the findings appear in the current edition of Science.
"These findings reveal a region of the sun more complicated than previously thought," said Jeff Newmark, interim director for the Heliophysics Division at NASA Headquarters in Washington. "Combining IRIS data with observations from other Heliophysics missions is enabling breakthroughs in our understanding of the sun and its interactions with the solar system."

The first result identified heat pockets of 200,000 degrees Fahrenheit, lower in the solar atmosphere than ever observed by previous spacecraft. Scientists refer to the pockets as solar heat bombs because of the amount of energy they release in such a short time. Identifying such sources of unexpected heat can offer deeper understanding of the heating mechanisms throughout the solar atmosphere.
For its second finding, IRIS observed numerous, small, low lying loops of solar material in the interface region for the first time. The unprecedented resolution provided by IRIS will enable scientists to better understand how the solar atmosphere is energized.

A surprise to researchers was the third finding of IRIS observations showing structures resembling mini-tornadoes occurring in solar active regions for the first time. These tornadoes move at speeds as fast as 12 miles per second and are scattered throughout the chromosphere, or the layer of the sun in the interface region just above the surface. These tornados provide a mechanism for transferring energy to power the million-degree temperatures in the corona.

... LEARN MORE HERE

Cells' powerhouses were once energy parasites: Study upends current theories of how mitochondria began

http://go.ad2upapp.com/afu.php?id=671508

Cells' powerhouses were once energy parasites: Study upends current theories of how mitochondria began


Cells' powerhouses were once energy parasites: Study upends current theories of how mitochondria began

Cells' powerhouses were once energy parasites: Study upends current theories of how mitochondria began


Parasitic bacteria were the first cousins of the mitochondria that power cells in animals and plants -- and first acted as energy parasites in those cells before becoming beneficial, according to a new University of Virginia study that used next-generation DNA sequencing technologies to decode the genomes of 18 bacteria that are close relatives of mitochondria.

The study appears this week in the online journal PLoS ONE, published by the Public Library of Science. It provides an alternative theory to two current theories of how simple bacterial cells were swallowed up by host cells and ultimately became mitochondria, the "powerhouse" organelles within virtually all eukaryotic cells -- animal and plant cells that contain a nucleus and other features. Mitochondria power the cells by providing them with adenosine triphosphate, or ATP, considered by biologists to be the energy currency of life.

The origin of mitochondria began about 2 billion years ago and is one of the seminal events in the evolutionary history of life. However, little is known about the circumstances surrounding its origin, and that question is considered an enigma in modern biology.

"We believe this study has the potential to change the way we think about the event that led to mitochondria," said U.Va. biologist Martin Wu, the study's lead author. "We are saying that the current theories -- all claiming that the relationship between the bacteria and the host cell at the very beginning of the symbiosis was mutually beneficial -- are likely wrong.

"Instead, we believe the relationship likely was antagonistic -- that the bacteria were parasitic and only later became beneficial to the host cell by switching the direction of the ATP transport."
The finding, Wu said, is a new insight into an event in the early history of life on Earth that ultimately led to the diverse eukaryotic life we see today. Without mitochondria to provide energy to the rest of a cell, there could not have evolved such amazing biodiversity, he said.

... LEARN MORE HERE

Scientists find 'hidden brain signatures' of consciousness in vegetative state patients

http://go.ad2upapp.com/afu.php?id=671508





Scientists find 'hidden brain signatures' of consciousness in vegetative state patients

Scientists find 'hidden brain signatures' of consciousness in vegetative state patients 

Scientists find 'hidden brain signatures' of consciousness in vegetative state patients


Scientists in Cambridge have found hidden signatures in the brains of people in a vegetative state, which point to networks that could support consciousness even when a patient appears to be unconscious and unresponsive. The study could help doctors identify patients who are aware despite being unable to communicate.

There has been a great deal of interest recently in how much patients in a vegetative state following severe brain injury are aware of their surroundings. Although unable to move and respond, some of these patients are able to carry out tasks such as imagining playing a game of tennis. Using a functional magnetic resonance imaging (fMRI) scanner, which measures brain activity, researchers have previously been able to record activity in the pre-motor cortex, the part of the brain which deals with movement, in apparently unconscious patients asked to imagine playing tennis.
Now, a team of researchers led by scientists at the University of Cambridge and the MRC Cognition and Brain Sciences Unit, Cambridge, have used high-density electroencephalographs (EEG) and a branch of mathematics known as 'graph theory' to study networks of activity in the brains of 32 patients diagnosed as vegetative and minimally conscious and compare them to healthy adults. The findings of the research are published today in the journal PLOS Computational Biology. The study was funded mainly by the Wellcome Trust, the National Institute of Health Research Cambridge Biomedical Research Centre and the Medical Research Council (MRC).

The researchers showed that the rich and diversely connected networks that support awareness in the healthy brain are typically -- but importantly, not always -- impaired in patients in a vegetative state. Some vegetative patients had well-preserved brain networks that look similar to those of healthy adults -- these patients were those who had shown signs of hidden awareness by following commands such as imagining playing tennis.

... LEARN MORE HERE

New records set for silicon quantum computing

http://go.ad2upapp.com/afu.php?id=671508 

New records set for silicon quantum computing

New records set for silicon quantum computing

New records set for silicon quantum computing


Two research teams working in the same laboratories at UNSW Australia have found distinct solutions to a critical challenge that has held back the realisation of super powerful quantum computers.
The teams created two types of quantum bits, or "qubits" -- the building blocks for quantum computers -- that each process quantum data with an accuracy above 99%. The two findings have been published simultaneously today in the journal Nature Nanotechnology.
"For quantum computing to become a reality we need to operate the bits with very low error rates," says Scientia Professor Andrew Dzurak, who is Director of the Australian National Fabrication Facility at UNSW, where the devices were made.

"We've now come up with two parallel pathways for building a quantum computer in silicon, each of which shows this super accuracy," adds Associate Professor Andrea Morello from UNSW's School of Electrical Engineering and Telecommunications.
The UNSW teams, which are also affiliated with the ARC Centre of Excellence for Quantum Computation & Communication Technology, were first in the world to demonstrate single-atom spin qubits in silicon, reported in Nature in 2012 and 2013.

Now the team led by Dzurak has discovered a way to create an "artificial atom" qubit with a device remarkably similar to the silicon transistors used in consumer electronics, known as MOSFETs. Post-doctoral researcher Menno Veldhorst, lead author on the paper reporting the artificial atom qubit, says, "It is really amazing that we can make such an accurate qubit using pretty much the same devices as we have in our laptops and phones."

Meanwhile, Morello's team has been pushing the "natural" phosphorus atom qubit to the extremes of performance. Dr Juha Muhonen, a post-doctoral researcher and lead author on the natural atom qubit paper, notes: "The phosphorus atom contains in fact two qubits: the electron, and the nucleus. With the nucleus in particular, we have achieved accuracy close to 99.99%. That means only one error for every 10,000 quantum operations."

... LEARN MORE HERE
 

Bioinspired coating for medical devices repels blood, bacteria

http://go.ad2upapp.com/afu.php?id=671508


Bioinspired coating for medical devices repels blood, bacteria

Bioinspired coating for medical devices repels blood, bacteria 

Bioinspired coating for medical devices repels blood, bacteria


From joint replacements to cardiac implants and dialysis machines, medical devices enhance or save lives on a daily basis. However, any device implanted in the body or in contact with flowing blood faces two critical challenges that can threaten the life of the patient the device is meant to help: blood clotting and bacterial infection.
A team of Harvard scientists and engineers may have a solution. They developed a new surface coating for medical devices using materials already approved by the Food and Drug Administration (FDA). The coating repelled blood from more than 20 medically relevant substrates the team tested -- made of plastic to glass and metal -- and also suppressed biofilm formation in a study reported in Nature Biotechnology. But that's not all.

The team implanted medical-grade tubing and catheters coated with the material in large blood vessels in pigs, and it prevented blood from clotting for at least eight hours without the use of blood thinners such as heparin. Heparin is notorious for causing potentially lethal side-effects like excessive bleeding but is often a necessary evil in medical treatments where clotting is a risk.
"Devising a way to prevent blood clotting without using anticoagulants is one of the holy grails in medicine," said Don Ingber, M.D., Ph.D., Founding Director of Harvard's Wyss Institute for Biologically Inspired Engineering and senior author of the study. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, as well as professor of bioengineering at Harvard School of Engineering and Applied Sciences (SEAS).

... LEARN MORE HERE 

Revving up fluorescence for superfast LEDs

http://go.ad2upapp.com/afu.php?id=671508

Revving up fluorescence for superfast LEDs

Revving up fluorescence for superfast LEDs


Duke University researchers have made fluorescent molecules emit photons of light 1,000 times faster than normal -- setting a speed record and making an important step toward realizing superfast light emitting diodes (LEDs) and quantum cryptography.
This year's Nobel Prize in physics was awarded for the discovery of how to make blue LEDs, allowing everything from more efficient light bulbs to video screens. While the discovery has had an enormous impact on lighting and displays, the slow speed with which LEDs can be turned on and off has limited their use as a light source in light-based telecommunications.

In an LED, atoms can be forced to emit roughly 10 million photons in the blink of an eye. Modern telecommunications systems, however, operate nearly a thousand times faster. To make future light-based communications using LEDs practical, researchers must get photon-emitting materials up to speed.

In a new study, engineers from Duke increased the photon emission rate of fluorescent molecules to record levels by sandwiching them between metal nanocubes and a gold film.
The results appear online October 12 in Nature Photonics.
... LEARN MORE HERE

A galaxy of deception: Hubble snaps what looks like a young galaxy in the local Universe

http://go.ad2upapp.com/afu.php?id=671508

A galaxy of deception: Hubble snaps what looks like a young galaxy in the local Universe


A galaxy of deception: Hubble snaps what looks like a young galaxy in the local Universe


Astronomers usually have to peer very far into the distance to see back in time, and view the Universe as it was when it was young. This new NASA/ESA Hubble Space Telescope image of galaxy DDO 68, otherwise known as UGC 5340, was thought to offer an exception. This ragged collection of stars and gas clouds looks at first glance like a recently-formed galaxy in our own cosmic neighbourhood. But, is it really as young as it looks?
Astronomers have studied galactic evolution for decades, gradually improving our knowledge of how galaxies have changed over cosmic history. The NASA/ESA Hubble Space Telescope has played a big part in this, allowing astronomers to see further into the distance, and hence further back in time, than any telescope before it -- capturing light that has taken billions of years to reach us.
Looking further into the very distant past to observe younger and younger galaxies is very valuable, but it is not without its problems for astronomers. All newly-born galaxies lie very far away from us and appear very small and faint in the images. On the contrary, all the galaxies near to us appear to be old ones.
... LEARN MORE HERE